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Abstract

In this paper, we compute the exact probability mass function of the
number of coin flips to get m consecutive heads. Meaning that we take
D, a random variable modeling the number of coin flips until the coin
gives m heads in a row; then we will explicit a function f such that
for all n, f(n) = P (D = n). Where P (D = n) is the probability that
the m last flips among n total flips are heads while the n − m first flips
doesn’t contain a string of m uninterrupted heads. Using f we compute
the cumulative distribution function (CDF) of D as well as E(D): the
expected number of flips. In addition we provide a python program to
compute f , the CDF ofD and the average ofD at the following repository:
git.jaalmoes.com/coin flip.

1 Introduction

Repeating events and their occurrences is of interest in many fields: sports,
physics, network, etc. In baseball, successfully repeating an exceptional action
such as hitting a home run can be decisive for a player’s carrier [1]. In reliability
engineering, redundancy is used to reduce the probability of system failure [4].
Hence studying the distribution of consecutive failure of redundant parts allows
a deeper understanding of the risk of full system failure. In networking, the
wildly used transmission control protocol (TCP) uses re transmission to manage
packet loss. Consecutive packet loss perturbs the re transmission scheme [8],
hence studying the odds and frequencies of losing multiple packets in a row is a
key aspect of building reliable networks.

There are many problems considering streaks for instance the number of
streaks among n tries, or the waiting time in-between streaks. In this paper
we choose to study the number of tries before a streak of size m. In reliability
engineering it corresponds to the number of time a system can be used before
full failure. This problem is usually studied either through simulation or by
using the inclusion exclusion principle and the Bonferroni inequality to find an
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Figure 1: Repeating coin flip until m = 3 heads on a row

approximation [4]. The issue with numerical simulations is computing time and
eventual cost of the simulation if real-world experiments have to be made [3].

In this work, we compute an exact formula of the probability law of the
number of tries before a streak of size m. The formula’s computation relies on
two key algorithms: root finding [7] and matrix inversion. The degree of the
polynomial and the rank of the matrix is m hence complexity of the numerical
method depends on m. We use Numpy’s implementations for numerical matrix
inversion and root finding [6].

2 Problem definition

We consider a coin with a probability p ∈ [0, 1] to land heads up. LetX0, · · · , Xn−1

be n random variables independent and identically distributed that follow a
Bernoulli law of probability p ∈ [0, 1]. Each Xi models one coin flip and takes
the value 1 for head and 0 for tail. Let m ∈ {1, · · · , n}. We are interested in
computing the probability of m consecutive heads. We model those events using
the following vector of random variables :

∀i ∈ {0, · · · , n−m+ 1} Yi =

i+m−1∏
j=i

Xi

With this model, the ith collection of m consecutive coin flips result in only
heads if and only if Yi = 1. On the contrary, if Yi = 0 at least one the m coin
flips ends up on tail. We remark that even if (Xi) is mutually independent, (Yi)
is not. This setup is represented in figure 1.

3 Mass function

The probability to obtain m heads on a row after flipping the coin n times and
not before is the probability of the following event : ”The first collection of m
flips to give only heads is the (n − m + 1)th”. Let f(n) be the probability of
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this event. We start by computing f(n) for n ≤ 2m.

f(n) =

 0 if n < m
pm if n = m
qpm if m < n ≤ 2m

Let’s now study the case where n > 2m.

P (Y0 = 0 ∩ · · · ∩ Yn−m−1 = 0 ∩ Yn−m = 1) (1)

=P

(
n−m−1⋂

i=0

Yi = 0 ∩
m−1⋂
i=0

Xn−m+i = 1

)
(2)

=P

(
n−2m−1⋂

i=0

Yi = 0 ∩Xn−m−1 = 0 ∩
m−1⋂
i=0

Xn−m+i = 1

)
(3)

=P

(
n−2m−1⋂

i=0

Yi = 0

)
P

(
Xn−m−1 = 0 ∩

m−1⋂
i=0

Xn−m+i = 1

)
(4)

=P

(
n−2m−1⋂

i=0

Yi = 0

)
(1− p)pm (5)

Let’s now study the sequence un = P (
⋂n

i=0 Yi = 0).

Case 1 n = 0 u0 = P (Y0 = 0) = 1 − P (X0 = 1 ∩ · · · ∩Xn+m−1 = 1). Since
(Xn)n∈N is mutually independent, u0 = 1− pm.

Case 2 n ≤ m

un =

(
1− P

(
Yn = 1 |

n−1⋂
i=0

Yi = 0

))
un−1 = un−1 − (1− p)pm

In this case we can solve the sequence :

un = 1− pm − n(1− p)pm

Case 3 n > m According it Bayes’ formula

un = P

(
n⋂

i=0

Yi = 0

)
= P

(
Yn = 0 |

n−1⋂
i=0

Yi = 0

)
un−1

Since Yn takes values in {0, 1},

un =

(
1− P

(
Yn = 1 |

n−1⋂
i=0

Yi = 0

))
un−1 (6)
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Figure 2: Mass function for p = 0.9, m = 5 on the left and p = 0.2, m = 20 on
the right.

To compute P
(
Yn = 1 | ⋂n−1

i=0 Yi = 0
)
we use once more Bayes’ formula and

obtain :

P
(
Yn = 1 ∩⋂n−1

i=0 Yi = 0
)

un−1

By using the same method as in equations 1 to 5 and by substitution in equation
6

un = un−1 − (1− p)pmun−m−1

By using the initial conditions described in cases 1 and 2 we can solve the
sequence in case 3 by first finding the roots of the characteristic polynomial
Q(λ) = λm+1−λm+(1− p)pm for λ ∈ C. Let those roots be λ0, · · · , λm. Then
un =

∑m
i=0 ciλ

n
i where (ci)i∈{0,··· ,m} ∈ Cm+1 are found by using the initial

conditions of cases 1 and 2. Namely : c0
...
cm

 = Λ−1

u0

...
um

 with Λ =

λ0
0 · · · λ0

m
...

...
...

λm
0 · · · λm

m


Finding Λ and inverting it can be done on a case by case basis numerically.
Hence for all n ∈ N∗, we have

f(n) =


0 if n < m
pm if n = m

(1− p)pm if m < n ≤ 2m
un−2m−1(1− p)pm if n ≥ 2m+ 1

We display f for m = 5 and m = 20 on figure 2.
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Figure 3: CDF for p = 0.9, m = 5 on the left and p = 0.2, m = 20 on the right.

4 Cumulative distribution function

We build the random variable D such that ∀n ∈ N P (Dn) = f(n). Let F be
the CDF of D: for all N ∈ N∗, F (N) = P (D ≤ N) Hence

F (N) =

N∑
n=1

f(n) =


0 if N < m
pm if N = m

pm + (N −m)(1− p)pm if m < N ≤ 2m

pm +m(1− p)pm + (1− p)pm
∑N−2m−1

n=1 un if N < m
(7)

Let’s compute on the side the sum of un. Let n ∈ N

n∑
i=0

ui =

n∑
i=0

m∑
j=0

cjλ
i
j =

m∑
j=0

cj

n∑
i=0

λi
j =

m∑
j=0

cj
1− λn+1

j

1− λj
(8)

By substitution of the sum in the last line of equation 7 we obtain:

F (N) =

N∑
n=1

f(n) =


0 if N < m
pm if N = m

pm + (n−m)(1− p)pm if m < N ≤ 2m

pm +m(1− p)pm + (1− p)pm
∑m

j=0 cj
1−λN−2m

j

1−λj
if N < m

We display the CDF of D, F in figure 3.

5 Average number of coin flip to get m heads on
a row

We compute the expected value of D, noted E(D).

E(D) =

+∞∑
i=m

iP (D = i) = mpm+(1−p)pm
2m∑

i=m+1

i+(1−p)pm
+∞∑

i=2m+1

iui−2m−1

(9)
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We are going to study the partial sums of the last equation. Let A ∈ N such
that A > 2m+ 1.

A∑
i=2m+1

iui−2m−1 =

A−2m−1∑
i=0

(i+ 2m+ 1)ui =

A−2m−1∑
i=0

iui + (2m+ 1)

A−2m−1∑
i=0

ui

We are going to study separately the two previous sums.
On one hand: According to equation 8:

(2m+ 1)

A−2m−1∑
i=0

ui = (2m+ 1)

m∑
j=0

cj
1− λA−2m

j

1− λj

Hence

lim
A→+∞

(2m+ 1)

A−2m−1∑
i=0

ui = (2m+ 1)

m∑
j=0

cj
1− λj

(10)

On the other hand:

A−2m−1∑
i=0

iui

=

A−2m−1∑
i=0

i

m∑
j=0

cjλ
i
j

=

m∑
j=0

cj

A−2m−1∑
i=0

iλi
j

=

m∑
j=0

cj
1

1− λj

(
λj − λA−2m

j

1− λj
− (A− 2m− 1)λA−2m

j

)

Hence

lim
A→+∞

A−2m−1∑
i=0

iui =

m∑
j=0

cjλj

(1− λj)
2 (11)

By substitution of the results of equations 10 and 11 in equation 12, we
obtain:

E(D) = mpm+(1−p)pm
3m2 +m

2
+(1−p)pm

 m∑
j=0

cjλj

(1− λj)
2 + (2m+ 1)

m∑
j=0

cj
1− λj


(12)

Using this equation for the expected value, we get insight on the variations
of the average of coin flips needed. We do so by plotting once in function of
m: the streak size and once in function of p: the probability to get head. We
present those two plots in figure 4. We observe that increasing m results in an
exponential growth in the average number of coin flips.
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Figure 4: Average number of coin flips to get m head on a row where the
probability to get head is p. On the left, average in function of p, on the right,
average in function of m. Both figure are in log-scale for the y-axis.

6 Related work

Using Markov chains we find that the expected number of coin flips untilm heads

on a row is p−1−1
1−p [5]. This formula is easier to work with than the expression

we found for E(D) in equation 12; but [5] does not provide an expression for
the mass function nor the CDF. Those two functions give more information on
the law of D than just the average and can be used to find quantile, moments
or event generate sample using inverse transform sampling [2].

7 Conclusion

We have successfully computed an expression of the mass function and the CDF
of the number of coin flips required before getting m heads on a row. Those
expressions relies on root finding and matrix inversion algorithms with a com-
plexity increasing with m. We provide python code at the following repository
git.jaalmoes.com/coin flip that allows to compute both the mass function and
the CDF for arbitrary values of p andm by using state of the art base algorithms
of the Numpy [6] python package.

This theory along with our implementation allows to compute confidence
intervals, statistical testing and random sampling. Those three usage are foun-
dations of reliable engineering and data analysis.
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